产品和服务 / 产品类型 / 细胞系&裂解液 / KO细胞裂解液

STAT5B Knockout HeLa Cell Lysate, Homozygous (RM02068)

Genome sequence analysis of PCR products from parental (WT) and STAT5B knockout (KO) HeLa cells, using sanger sequencing.

All(1)|
货号: RM02068
促销价:   ¥4700
抗体定制
服务咨询
|
扫码下单
享受积分

详细信息

靶点
STAT5B
细胞系
HeLa
突变描述
STAT5B Knockout HeLa Cell Line is engineered from HeLa cell line with Gene-Editing technology.
Allele-1:exon2 was deleted
Allele-2:exon2 was deleted

Mammalian cells such as human, rat and mouse cells are normally diploid with two alleles.
Homozygote: both alleles were knocked out, mRNA has no signal, no expression of proteins.
Heterozygote: only one allele was knocked out, the mRNA transcript levels was decreased compared to wild type, and the protein expression levels was also lower than that of the wild type.
敲除验证
Sanger Sequencing
产品组成
1 vial parental cell Lysate and 1 vial knockout cell Lysate
裂解液量
50μL, 2μg/μL.
使用方法
To be used as WB control. Lysate is supplied in 1× SDS sample buffer (2% SDS, 60 mM
Tris-HCl pH 6.8, 10% Glycerol, 0.02% Bromophenol blue, 60 mM beta-mercaptoethanol).
Lysate should be boiled for 3 - 5 minutes before loading onto gel.
物种
Human
保存条件
Lysate is stable for 12 months when stored at -20℃. Minimizing freeze-thaw cycles.
运输条件
4℃

背景信息

The protein encoded by this gene is a member of the STAT family of transcription factors. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein mediates the signal transduction triggered by various cell ligands, such as IL2, IL4, CSF1, and different growth hormones. It has been shown to be involved in diverse biological processes, such as TCR signaling, apoptosis, adult mammary gland development, and sexual dimorphism of liver gene expression. This gene was found to fuse to retinoic acid receptor-alpha (RARA) gene in a small subset of acute promyelocytic leukemias (APLL). The dysregulation of the signaling pathways mediated by this protein may be the cause of the APLL. [provided by RefSeq, Jul 2008]