ABclonal www.abclonal.com

α-Smooth Muscle Actin (ACTA2) Rabbit pAb

Catalog No.: A1011 41 Publications

Basic Information

Observed MW

42kDa

Calculated MW

42kDa

Category

Primary antibody

Applications

WB,IF-P,IHC-P,ELISA

Cross-Reactivity

Human, Mouse, Rat

Background

This gene encodes one of six different actin proteins. Actins are highly conserved proteins that are involved in cell motility, structure, integrity, and intercellular signaling. The encoded protein is a smooth muscle actin that is involved in vascular contractility and blood pressure homeostasis. Mutations in this gene cause a variety of vascular diseases, such as thoracic aortic disease, coronary artery disease, stroke, and Moyamoya disease, as well as multisystemic smooth muscle dysfunction syndrome.

Recommended Dilutions

WB 1:500 - 1:1000

IF-P 1:50 - 1:200

IHC-P 1:500 - 1:1000

ELISA Recommended starting

concentration is 1 µg/mL.

Please optimize the
concentration based on
your specific assay
requirements.

Immunogen Information

Gene IDSwiss Prot

9

P62736

Immunogen

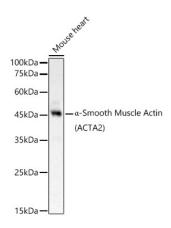
Recombinant protein (or fragment). This information is considered to be commercially sensitive.

Synonyms

ACTSA; α-Smooth Muscle Actin (ACTA2)

Contact

<u>a</u>		400-999-6126
\bowtie		cn.market@abclonal.com.cn
\odot	1	www.abclonal.com.cn


Product Information

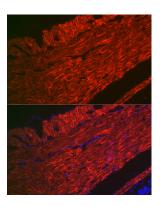
SourceIsotypePurificationRabbitIgGAffinity purification

Storage

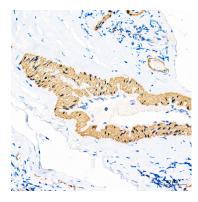
Store at -20°C. Avoid freeze / thaw cycles.

Buffer: PBS containing 50% glycerol, preserved with proclin300 or sodium azide (as specified on the Certificate of Analysis), pH 7.3.

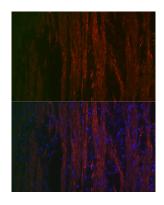
Western blot analysis of lysates from Mouse heart, using α -Smooth Muscle Actin (ACTA2) Rabbit pAb (A1011) at 1:800 dilution.

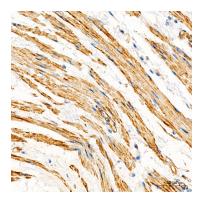

Secondary antibody: HRP-conjugated Goat anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution.

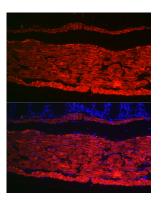
Lysates/proteins: 25µg per lane.

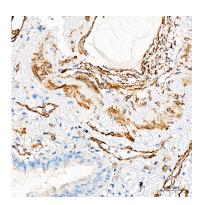

Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).


Exposure time: 10s.


Immunofluorescence analysis of paraffinembedded rat rectum using α -Smooth Muscle Actin (ACTA2) Rabbit pAb (A1011) at dilution of 1:100 (40x lens). Secondary antibody: Cy3-conjugated Goat anti-Rabbit IgG (H+L) (AS007) at 1:500 dilution. Blue: DAPI for nuclear staining.


Immunohistochemistry analysis of paraffinembedded Human tonsil tissue using α -Smooth Muscle Actin (ACTA2) Rabbit pAb (A1011) at a dilution of 1:1000 (40x lens). High pressure antigen retrieval was performed with 0.01 M Tris-EDTA buffer (pH 9.0) prior to IHC staining.


Immunofluorescence analysis of paraffinembedded human smooth muscle using $\alpha\textsc{-}Smooth$ Muscle Actin (ACTA2) Rabbit pAb (A1011) at dilution of 1:100 (40x lens). Secondary antibody: Cy3-conjugated Goat anti-Rabbit IgG (H+L) (AS007) at 1:500 dilution. Blue: DAPI for nuclear staining.

Immunohistochemistry analysis of paraffinembedded Human esophagus tissue using $\alpha\textsc{-}$ Smooth Muscle Actin (ACTA2) Rabbit pAb (A1011) at a dilution of 1:1000 (40x lens). High pressure antigen retrieval was performed with 0.01 M Tris-EDTA buffer (pH 9.0) prior to IHC staining.

Immunofluorescence analysis of paraffinembedded mouse colon using $\alpha\text{-Smooth}$ Muscle Actin (ACTA2) Rabbit pAb (A1011) at dilution of 1:100 (40x lens). Secondary antibody: Cy3-conjugated Goat anti-Rabbit IgG (H+L) (AS007) at 1:500 dilution. Blue: DAPI for nuclear staining.

Immunohistochemistry analysis of paraffinembedded Human lung tissue using $\alpha\textsubstack}-$