NQ01 Rabbit pAb

Catalog No.: A16830

Basic Information

Observed MW

31kDa

Calculated MW

31kDa

Category

Primary antibody

Applications

ELISA,WB

Cross-Reactivity

Human

Background

This gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. This FAD-binding protein forms homodimers and reduces quinones to hydroquinones. This protein's enzymatic activity prevents the one electron reduction of quinones that results in the production of radical species. Mutations in this gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of this protein has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized.

Recommended Dilutions

WB

1:500 - 1:2000

Immunogen Information

Gene ID 1728 **Swiss Prot**

P15559

Immunogen

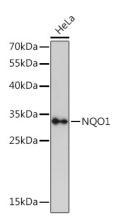
Recombinant fusion protein containing a sequence corresponding to amino acids 1-274 of human NQO1 (NP_000894.1).

Synonyms

DTD; QR1; DHQU; DIA4; NMOR1; NMORI; NQO1

Contact

a		400-999-6126
\bowtie		cn.market@abclonal.com.cn
\odot	T	www.abclonal.com.cn


Product Information

SourceIsotypePurificationRabbitIgGAffinity purification

Storage

Store at -20°C. Avoid freeze / thaw cycles.

Buffer: PBS with 0.01% thimerosal,50% glycerol,pH7.3.

Western blot analysis of lysates from HeLa cells, using NQO1 Rabbit pAb (A16830) at 1:3000 dilution. Secondary antibody: HRP Goat Anti-Rabbit \log (H+L) (AS014) at 1:10000 dilution.

Lysates/proteins: 25µg per lane.

Blocking buffer: 3% nonfat dry milk in TBST.

Detection: ECL Basic Kit (RM00020).

Exposure time: 90s.