ABclonal www.abclonal.com

ABflo® 647 Rabbit anti-Human CD31/PECAM1 mAb

Catalog No.: A22509

Basic Information

Observed MW

Refer to figures

Calculated MW

83kDa

Category

Primary antibody

Applications

FC

Cross-Reactivity

Human

CloneNo number

ARC54799-ABf647

Conjugate

ABflo® 647. Ex:648nm. Em:664nm.

Background

The protein encoded by this gene is found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell intercellular junctions. The encoded protein is a member of the immunoglobulin superfamily and is likely involved in leukocyte migration, angiogenesis, and integrin activation.

Recommended Dilutions

FC

5 μl per 10^6 cells in 100 μl volume

Immunogen Information

Gene ID 5175 **Swiss Prot**

P16284

Immunogen

Recombinant fusion protein containing a sequence corresponding to amino acids 28-601 of human CD31 (NP_000433.4).

Synonyms

CD31; PECA1; GPIIA'; PECAM-1; endoCAM; CD31/EndoCAM

Contact

<u>a</u>	400-999-6126
\bowtie	cn.market@abclonal.com.cn
<u>~</u>	www.abclonal.com.cn

Product Information

SourceIsotypePurificationRabbitIgGAffinity purification

Storage

Store at 2-8°C. Avoid freeze.

Buffer: PBS with 0.03% proclin300,0.2% BSA,pH7.3.

Validation Data

Flow cytometry:1X10^6 SK-BR-3 cells (negative control,left) and HEL cells (right) were surface-stained with ABflo® 647 Rabbit anti-Human CD31/PECAM1 mAb(A22509,5 µl/Test,orange line) or ABflo® 647 Rabbit IgG isotype control (A22070,5 µl/Test,blue line). Non-fluorescently stained cells were used as blank control (red line).

Flow cytometry:1X10^6 HEL cells were surface-stained with ABflo® 647 Rabbit IgG isotype control (A22070,5 μ I/Test,Ieft) or ABflo® 647 Rabbit anti-Human CD31 mAb(A22509,5 μ I/Test,right).