产品和服务 / 产品类型 / 细胞系&裂解液 / KO细胞裂解液

NLRP3 Knockout 293T Cell Lysate, Homozygous (RM02062)

Genome sequence analysis of PCR products from parental (WT) and NLRP3 knockout (KO) 293T cells, using sanger sequencing.

All(1)|
货号: RM02062
促销价:   ¥4700
抗体定制服务咨询 |
商城订购

详细信息

靶点
NLRP3
细胞系
293T
突变描述
NLRP3 Knockout 293T Cell Line is engineered from 293T cell line with Gene-Editing technology.
Allele-1:64bp deletion in exon1
Allele-2:85bp deletion in exon1

Mammalian cells such as human, rat and mouse cells are normally diploid with two alleles.
Homozygote: both alleles were knocked out, mRNA has no signal, no expression of proteins.
Heterozygote: only one allele was knocked out, the mRNA transcript levels was decreased compared to wild type, and the protein expression levels was also lower than that of the wild type.
敲除验证
Sanger Sequencing
产品组成
1 vial parental cell Lysate and 1 vial knockout cell Lysate
裂解液量
50μL, 2μg/μL.
使用方法
To be used as WB control. Lysate is supplied in 1× SDS sample buffer (2% SDS, 60 mM
Tris-HCl pH 6.8, 10% Glycerol, 0.02% Bromophenol blue, 60 mM beta-mercaptoethanol).
Lysate should be boiled for 3 - 5 minutes before loading onto gel.
物种
Human
保存条件
Lysate is stable for 12 months when stored at -20℃. Minimizing freeze-thaw cycles.
运输条件
4℃

背景信息

This gene encodes a pyrin-like protein containing a pyrin domain, a nucleotide-binding site (NBS) domain, and a leucine-rich repeat (LRR) motif. This protein interacts with the apoptosis-associated speck-like protein PYCARD/ASC, which contains a caspase recruitment domain, and is a member of the NALP3 inflammasome complex. This complex functions as an upstream activator of NF-kappaB signaling, and it plays a role in the regulation of inflammation, the immune response, and apoptosis. Mutations in this gene are associated with familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), chronic infantile neurological cutaneous and articular (CINCA) syndrome, and neonatal-onset multisystem inflammatory disease (NOMID). Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified for this gene. Alternative 5' UTR structures are suggested by available data; however, insufficient evidence is available to determine if all of the represented 5' UTR splice patterns are biologically valid. [provided by RefSeq, Oct 2008]

>