产品和服务 / 产品类型 / 细胞系&裂解液 / KO细胞系

HOPX Knockout 293T Cell Line, Homozygous (RM02706)

Genome sequence analysis of PCR products from parental (WT) and HOPX knockout (KO) 293T cells, using sanger sequencing.

All(1)|
货号: RM02706
促销价:   ¥10000
货    期:现货产品
抗体定制
服务咨询
|
扫码下单
享受积分

详细信息

靶点
HOPX
细胞系
293T
突变描述
HOPX Knockout cell line is engineered from 293T cell line with Gene-Editing Technology.
Allele-1:95bp deletion in exon1
Allele-2:95bp deletion in exon1

Mammalian cells such as human, rat and mouse cells are normally diploid with two alleles.
Homozygote: both alleles were knocked out, mRNA has no signal, no expression of proteins.
Heterozygote: only one allele was knocked out, the mRNA transcript levels was decreased compared to wild type, and the protein expression levels was also lower than that of the wild type.
敲除验证
Sanger Sequencing
产品组成
1 vial parental cell line and 1 vial knockout cell line
细胞数目
1~5x106 cells/vial.
使用方法
Upon arrival, it should be maintained in DMEM medium with 10%(v/v) fetal bovine serum and 100U penicillin-streptomycin, at 37℃ with 5% CO2 condition.
1. Thaw the vial in 37℃ water bath ,and shake it to melt as soon as possible.
2. Transfer the cell suspension to a 15mL conical tube with pre-warmed 5mL complete me-
    dium and centrifuge 1000rpm for approximately 5 minutes at room temperature.
3. Remove and discard the supernatant.
4. Resuspend the cell pellet with 1mL pre-warmed complete medium and seed in 10cm dish.
5. Add 8-10mL of complete medium.
6. Incubate the culture at 37℃ incubator with 5% CO2.
7. A subcultivation ratio of 1:2-1:4 is recommended.
物种
Human
保存条件
Stored in liquid nitrogen for a long time less than -130℃. Minimizing freeze-thaw cycles.
运输条件
Dry ice

背景信息

The protein encoded by this gene is a homeodomain protein that lacks certain conserved residues required for DNA binding. It was reported that choriocarcinoma cell lines and tissues failed to express this gene, which suggested the possible involvement of this gene in malignant conversion of placental trophoblasts. Studies in mice suggest that this protein may interact with serum response factor (SRF) and modulate SRF-dependent cardiac-specific gene expression and cardiac development. Multiple alternatively spliced transcript variants have been identified for this gene.