产品中心 / 产品类型 / 细胞系&裂解液 / KO细胞裂解液

BCL10 Knockout 293T Cell Lysate, Homozygous (RM02487)

Genome sequence analysis of PCR products from parental (WT) and BCL10 knockout (KO) 293T cells, using sanger sequencing.

All(1)|
货号: RM02487
促销价:   ¥4700
抗体定制服务咨询

文献引用 (0)

详细信息

靶点
BCL10
细胞系
293T
突变描述
BCL10 Knockout 293T Cell Line is engineered from 293T cell line with Gene-Editing technology.
Allele-1:exon1 was deleted
Allele-2:exon1 was deleted

Mammalian cells such as human, rat and mouse cells are normally diploid with two alleles.
Homozygote: both alleles were knocked out, mRNA has no signal, no expression of proteins.
Heterozygote: only one allele was knocked out, the mRNA transcript levels was decreased compared to wild type, and the protein expression levels was also lower than that of the wild type.
敲除验证
Sanger Sequencing
产品组成
1 vial parental cell Lysate and 1 vial knockout cell Lysate
裂解液量
50μL, 2μg/μL.
使用方法
To be used as WB control. Lysate is supplied in 1× SDS sample buffer (2% SDS, 60 mM
Tris-HCl pH 6.8, 10% Glycerol, 0.02% Bromophenol blue, 60 mM beta-mercaptoethanol).
Lysate should be boiled for 3 - 5 minutes before loading onto gel.
物种
Human
保存条件
Lysate is stable for 12 months when stored at -20℃. Minimizing freeze-thaw cycles.
运输条件
4℃

背景信息

This gene was identified by its translocation in a case of mucosa-associated lymphoid tissue (MALT) lymphoma. The protein encoded by this gene contains a caspase recruitment domain (CARD), and has been shown to induce apoptosis and to activate NF-kappaB. This protein is reported to interact with other CARD domain containing proteins including CARD9, 10, 11 and 14, which are thought to function as upstream regulators in NF-kappaB signaling. This protein is found to form a complex with MALT1, a protein encoded by another gene known to be translocated in MALT lymphoma. MALT1 and this protein are thought to synergize in the activation of NF-kappaB, and the deregulation of either of them may contribute to the same pathogenetic process that leads to the malignancy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2016]

>