产品中心 / 产品类型 / 细胞系&裂解液 / KO细胞系

DNMT3B Knockout 293T Cell Line, Homozygous (RM01905)

Genome sequence analysis of PCR products from parental (WT) and DNMT3B knockout (KO) 293T cells, using sanger sequencing.

All(1)|
货号: RM01905
促销价:   ¥10000
抗体定制服务咨询

文献引用 (0)

详细信息

靶点
DNMT3B
细胞系
293T
突变描述
DNMT3B Knockout 293T Cell Line is engineered from 293T cell line with Gene-Editing Technology.
Allele-1:106bp deletion in exon3
Allele-2:106bp deletion in exon3

Mammalian cells such as human, rat and mouse cells are normally diploid with two alleles.
Homozygote: both alleles were knocked out, mRNA has no signal, no expression of proteins.
Heterozygote: only one allele was knocked out, the mRNA transcript levels was decreased compared to wild type, and the protein expression levels was also lower than that of the wild type.
敲除验证
Sanger Sequencing
产品组成
1 vial parental cell line and 1 vial knockout cell line
细胞数目
1~5x106 cells/vial
使用方法
Upon arrival, it should be maintained in DMEM medium with 10%(v/v) fetal bovine serum and 100U penicillin-streptomycin, at 37℃ with 5% CO2 condition.
1. Thaw the vial in 37℃ water bath ,and shake it to melt as soon as possible.
2. Transfer the cell suspension to a 15mL conical tube with pre-warmed 5mL complete me-
    dium and centrifuge 1000rpm for approximately 5 minutes at room temperature.
3. Remove and discard the supernatant.
4. Resuspend the cell pellet with 1mL pre-warmed complete medium and seed in 10cm dish.
5. Add 8-10mL of complete medium.
6. Incubate the culture at 37℃ incubator with 5% CO2.
7. A subcultivation ratio of 1:2-1:4 is recommended.
物种
Human
保存条件
Stored in liquid nitrogen for a long time less than -130℃. Minimizing freeze-thaw cycles.
运输条件
Dry ice

背景信息

CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a DNA methyltransferase which is thought to function in de novo methylation, rather than maintenance methylation. The protein localizes primarily to the nucleus and its expression is developmentally regulated. Mutations in this gene cause the immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. Eight alternatively spliced transcript variants have been described. The full length sequences of variants 4 and 5 have not been determined. [provided by RefSeq, May 2011]

>