Toll样受体信号通路

作为机体的第一道防线,天然免疫系统是通过模式识别受体(Pattern Recognition Receptors , PRRs)或信号感受器识别病原体相关分子模式(Pathogen-associated Molecular Patterns, PAMPs)和内源性损伤相关分子模式(Damage-associated Molecular Patterns, DAMPs)而被启动的 [1]。 其中,Toll样受体(Toll-like Receptors,TLRs)因与果蝇中Toll蛋白结构相似而得名,是最早被鉴定并在从昆虫到人类的多种动物中被广泛研究的模式识别受体[2]。
TLRs在包括免疫细胞和非免疫细胞的多种细胞类型上表达,它们是跨膜受体,可以定位于细胞表面或内体[3]。他们被外源性和可能的内源性配体结合,在连接天然免疫和炎症的各种免疫细胞中触发促炎信号级联。 结合配体后,形成TLR同源或异源二聚体,并通过MyD88、TIRAP、TRAM和/或TRIF等不同接头蛋白激活MyD88依赖和/或MyD88非依赖的信号途径[4]。除TLR3外,所有的TLRs都可以通过MyD88介导下游信号,而TLR3信号通过TRIF介导下游信号。然而,TLR2和TLR4需要通过TIRAP招募MyD88。TLR4比较特别,因为它可以同时利用MyD88和TRIF作为信号接头分子启动下游信号,但它还需要接头分子TRAM来招募TRIF和TIRAP来招募MyD88。在MyD88依赖的信号途径中,MyD88招募IRAK并造成这些IRAK被磷酸化,然后招募TRAF泛素连接酶。通常情况下,TRAF6与TAK和TAB形成复合物,TAK通过磷酸化修饰激活下游IKK-NF-κB和MAPK级联,进而导致转录因子NF-κB和AP-1的激活,并控制促炎细胞因子和其他免疫相关基因的表达[5]。也有报道发现,在特殊情况下TRAF6和MyD88可以通过激活IRF1或IRF5介导这个过程[6]。而TRAF3招募TBK1和IKKε,磷酸化和激活转录因子IRF(主要是IRF-3和IRF-7)并导致I型干扰素的产生。此外,在病毒感染时,TRAF6可以与IRF7、MyD88、IRAK4和IRAK1形成复合体[7]。 MyD88非依赖的信号途径存在于TLR3和TLR4下游,是由TRIF介导并通过RIPK1、TRAF6或TRAF3激活类似的下游信号[4]。
此外,TLRs与其他PRRs(如C型凝集素受体、NOD样受体和RIG-I样受体)的串话,使多种信号转导整合为一个网络,在感染和免疫中发挥协同作用[8]。TLRs还与PRRs以外的一些信号通路相互作用,例如,与低氧依赖通路共同参与肿瘤微环境中代谢重新编程的调控[9],与NRF2通路[10]和PPARs[11]共同参与炎症调节。

ABclonal针对Toll样受体信号通路研究,提供以下常见核心靶点的产品

TLR4 Rabbit pAb

Phospho-c-Jun-S73 Rabbit pAb

IRAK4 Rabbit pAb

IRF3 Rabbit pAb

TBK1/NAK Rabbit mAb

Phospho-TBK1/NAK-S172 Rabbit mAb

IKKβ Rabbit mAb

Phospho-JNK1/2/3-T183/T183/T221 Rabbit mAb

TLR信号通路精选研究产品

分类
研究靶点 产品名称 产品货号
TLR家族成员
TLR1TLR1 Rabbit pAbA0997
TLR2TLR2 Rabbit mAbA19125
TLR3TLR3 Rabbit pAbA11778
TLR4TLR4 Rabbit pAbA5258
TLR5TLR5 Rabbit mAbA8765
TLR6TLR6 Rabbit pAbA8185
TLR7TLR7 Rabbit mAbA21973
TLR7TLR7 Rabbit mAbA19126
TLR9TLR9 Rabbit pAbA14642
信号转导分子
MYD88[KO Validated] MyD88 Rabbit mAbA19082
MYD88MyD88 Rabbit mAbA21905
TRAF3TRAF3 Rabbit pAbA3094
TRAF6TRAF6 Rabbit pAbA16991
IRAK1IRAK1 Rabbit mAbA4439
IRAK2IRAK2 Rabbit mAbA4655
IRAK4IRAK4 Rabbit pAbA6208
MAP3K7TAK1 Rabbit mAbA19077
MAP3K7Phospho-TAK1-S439 Rabbit mAbA9437
TBK1TBK1/NAK Rabbit mAbA3458
TBK1Phospho-TBK1/NAK-S172 Rabbit mAbAP1026
CHUKIKKα Rabbit mAbA19694
IKBKBIKKβ Rabbit mAbA19606
CHUK/IKBKBPhospho-IKKα/β-S176/180 Rabbit pAbAP0546
IKBKEIKKε Rabbit mAbA3463
MAPK14[KO Validated] p38 MAPK Rabbit mAbA4771
MAPK14p38 MAPK Rabbit mAbA5049
MAPK14Phospho-p38 MAPK-T180/Y182 Rabbit mAbAP1311
MAPK14Phospho-p38 MAPK-T180/Y182 Rabbit pAbAP0526
MAPK8/MAPK9/MAPK10JNK1/2/3 Rabbit mAbA4867
MAPK8/MAPK9Phospho-JNK1/2-T183/Y185 Rabbit pAbAP0473
MAPK8/MAPK9/MAPK10Phospho-JNK1/2/3-T183/T183/T221 Rabbit mAbAP0631
转录因子
RELA[KO Validated] NF-kB p65/RelA Rabbit mAbA19653
RELAPhospho-NF-kB p65/RelA-S536 Rabbit mAbAP1294
RELAPhospho-NF-kB p65/RelA-S536 Rabbit pAbAP0124
JUNc-Jun Rabbit pAbA11378
JUNPhospho-c-Jun-S63 Rabbit mAbAP0105
JUNPhospho-c-Jun-S73 Rabbit pAbAP0119
JUNPhospho-c-Jun-T91 Rabbit mAbAP1003
IRF1IRF1 Rabbit pAbA7692
IRF3IRF3 Rabbit pAbA11118
IRF3[KO Validated] IRF3 Rabbit mAbA19717
IRF3Phospho-IRF3-S386 Rabbit mAbAP0995
IRF3Phospho-IRF3-S396 Rabbit pAbAP0623
IRF5IRF5 Rabbit mAbA11106
IRF7IRF7 Rabbit pAbA0159
  • 缩略语注释:
  • RIG-I, retinoic acid-inducible gene
  • MAVS,mitochondrial antiviral signaling
  • MDA5, melanoma differentiation associated gene 5
  • LGP2, laboratory of genetics and physiology 2
  • PAMP, pathogen-associated molecular patterns
  • pDCs, plasmacytoid dendritic cells
  • TRAF,TNF-receptor-associated factor
  • CARD9,caspase recruitment domain family member 9
  • TRADD, tumor necrosis factor receptor type 1-associated death domain
  • cIAP1/2, cellular inhibitor of apoptosis 1 and 2
  • TANK, TRAF Family Member Associated NFKB Activator
  • NAP1, NAK-associated protein 1
  • Tbkbp1, TBK1 binding protein 1
  • TAK,TGF-beta activated kinase
  • TAB, TAK1-associated binding protein 2
  • TBK, TANK binding kinase
  • IKK, inhibitor of nuclear factor kappa B kinase
  • RIPK1, receptor-interacting serine/threonine-protein kinase 1
  • FADD, Fas-associated protein with death domain
  • IRF, interferon regulatory factor
  • PCBP, poly(RC)-binding protein
  • Smurf2, smad ubiquitin regulatory factor 2
  • 参考文献:
  • 1.Front Immunol. (2014) 5: 342.
  • 2.Curr Opin Virol. (2015) 12: 91-98.
  • 3.Immunity. (2011) 34(5): 680–692.
  • 4.Nucleic Acids Res. (2015) 43(10): 5236-5248.
  • 5.J Mol Biol. (2013) 425(24):5009-5019.
  • 6.J Mol Signal. (2013) 8: 7.
  • 7.Eur J Immunol. (2017) 47(4):615-628.
  • 8.Trends Immunol. (2017) 38(3): 194-205.
  • 9.Curr Opin Virol. (2011) 1(3): 167-176.
  • 10.Cell Discov.(2016) 2:16024.
  • 11.Front Immunol. (2018) 9: 2096.